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Abstract—In this paper, we consider transmitting a sequence
of messages (a streaming source) over a packet erasure channel,
where every source message must be recovered perfectly at
the destination subject to a fixed decoding delay. Recently,
the capacity of such a channel was established. However, the
codes shown to achieve the capacity are either non-explicit
constructions (proven to exist) or explicit constructions requiring
large field size that scales exponentially with the delay. This work
presents an explicit rate-optimal construction for all channel and
delay parameters over a field size that scales only quadratically
with the delay.

I. INTRODUCTION

One of the fundamental requirements of a communication

system is to handle interrupts that occur during the trans-

mission of information. Such interrupts occur either due to

physical nature of the channel (for example, fading) or due

to packet drops in an interim point of the link (for example,

due to congestion or overload). In general, there are two main

error control schemes in use: Automatic repeat request (ARQ)

and forward error correction (FEC). While ARQ is appealing

due to not increasing the overhead added to the payload in

advance, when considering low latency applications, it may

not offer an acceptable solution.

Designing FEC with latency constraint (streaming setup)

was introduced by Martinian and Sunderberg in [1]. This

work analyzed only the case of bursts separated by sufficiently

long guard intervals. In this paper we consider the sliding-

window burst erasure model (which incorporates also arbitrary

erasures) originally proposed by Badr et al. in [2]. The

exact capacity in this setup was determined independently

by Fong et al. in [3] and Krishnan et al. [4]. The proof

in [3] is existential (proving the existence of an appropriate

generator matrix), while the field size requirements are large

(O
(
T

N

)
). Recently, Dudzicz et al. [5] showed an explicit (and

systematic) construction for all rates greater than or equal 1/2,

albeit the required field size is larger than the non-explicit

constructions of [3].

In [4] an explicit construction based on linearized poly-

nomials is presented. However, except for a small range of

parameters, the field-size requirements are still large exp(T ).
The field size was further addressed in [6] in which a new

rate-optimal code construction covering all channel and delay

parameters, which requires the field size to grow quadratically

O(T 2) is introduced. However, explicit constructions were

presented only for specific cases. In this paper we present

an explicit construction which requires only a quadratic field

size for all channel and delay parameters.

II. PROBLEM STATEMENT

A. Notation

We denote by Fq the finite field of size q where the elements

of the matrix belong to. The extension field is denoted by Fqm .

The symbol vectors are represented using the bold characters

(e.g., s). A generator matrix is denoted by G. The ith column

of G is denoted as gi. The identity matrix of size k is denoted

by Ik. In a standard manner, we define by R = k
n

as the rate

of the code.

A k × n matrix G over a finite field Fq , with k ≤ n, will

be referred to as a MDS matrix if any k distinct columns of

G form a linearly independent set. In the sequel we use the

following definitions

Definition 1. (Punctured Code) Let C be an (n, k) linear code

over Fq . Given a subset P of [0 : n−1], the code C punctured

on the coordinates in P , is the linear code of length (n−|P|)
obtained from C by deleting all the coordinates in P .

When C is an (n, k) MDS code, puncturing it over P results

with (n− |P|, k) MDS code.

Definition 2. (Shortened Code) Let C be an (n, k) linear code

over Fq . Given a subset P of [0 : n−1], consider the subcode

C∗ achieved when assuming

si = 0 ∀ i ∈ P. (1)

Then by the phrase C shortened on the coordinates in P , we

will mean the linear code of length (n − |P|) obtained from

C∗ after puncturing on the coordinates given by P .

When C is an (n, k) MDS code, shortening it over P results

with an (n−|P|, k−|P|) MDS code. In the sequel we denote

the shortened code as C|P|.

We note that the field size required to support an (n, k)
MDS code is O(n) (as, for example, (n, k) Reed-Solomon

code requires field in size n).



B. Streaming Codes

We consider sending a source S which generates at

each time instant t ∈ {0, 1, 2, . . .} a packet s[t] ,

[s0[t], s1[t], . . . , sk−1[t]]
T with si[t] ∈ Fq for i ∈

{0, 1, 2, . . . , k − 1}. Note that Fq is a finite field of size q
such that s[t] ∈ F

k
q . Each source packet s[t] is encoded using

a causal convolutional encoder E such that the encoded packet

x[t] = [x0[t], x1[t], . . . , xn−1[t]]
T = E(s[0], s[1], . . . , s[t]).

Where x[t] ∈ F
n
q and E : F

k(t+1)
q → F

n
q is the encoding

function.

Each encoded packet x[t] is transmitted over a channel

which introduces erasures on a packet level. The receiver

receives at each time t ∈ {0, 1, 2, . . .} the packet y[t] such

that

y[t] =

{

∗ if x[t] is erased

x[t] Otherwise
(2)

At the receiver the decoder D must reconstruct perfectly

the source packet s[t] within the delay T given the previ-

ously received packets {y[0], y[1], . . . , y[t + T ]}, i.e., ŝ[t] =
D(y[0], y[1], . . . , y[t + T ]) = ŝ[t] with D being the decoding

function and ŝ[t] being the reconstructed source packet s[t] by

the decoder.

C. Channel Model

The channel model considered in this work is the sliding-

window burst erasure channel denoted by C(W,B,N) that was

introduced by Badr et al. in [2]. This model introduces up to

B consecutive erasures or N arbitrarily positioned arbitrary

isolated erasures in any window of size W among the sequence

of transmitted packets x[t].
Since a channel that introduces any N arbitrary erasures can

introduce any burst erasure of length N , we assume without

loss of generality that B ≥ N .

We further assume that W ≥ T + 1. In case where

B < W ≤ T + 1 we can achieve the capacity by reducing

the effective delay to Teff = W − 1 as discussed in [7].

Furthermore the capacity is trivially zero if W ≤ B as an

erasure sequence that erases all the channel packets becomes

admissible.

Thus we can assume without loss of generality that

W > T ≥ B ≥ N ≥ 1. (3)

For further details refer to Section I-B of [3].

D. Capacity

A streaming code with the encoder and decoder definitions

in Section II-A is feasible for the C(W,B,N) sliding window

channel if every source packet can be recovered with a delay

of T . The maximum achievable rate of a feasible code is the

capacity.

Recently, independent works in [3], [4] established that the

capacity is given by:

C =
T −N + 1

T −N +B + 1
. (4)

III. CODE CONSTRUCTION

In [4], it has been shown that designing an optimal stream-

ing code for channels with burst and arbitrary erasures is

equivalent to designing a linear (n, k) block which conforms

to C(W,B,N) with delay-constraint T (and thus, the required

streaming code can be generated from this block code using

diagonal interleaving, see, e.g., [1]). Therefore, in this Section

we present the construction of the generator matrix G of

the (n, k) block code C and show it can decode all the data

symbols with maximal delay of T from a burst of length B
or N arbitrary erasures symbols in a sliding window of W .

We define

k = T −N + 1

n = k +B (5)

in the same manner as was defined in [3]. The code is

constructed as follows.

• We start with an (n, k) MDS code C′′ over Fq with the

generator matrix1

G′′ =













1 0 0 0 · · · 0 Y · · · · · · · · · · · · Y
0 1 0 0 · · · 0 Y · · · · · · · · · · · · Y

0 0
. . . 0 · · · 0 Y · · · · · · · · · · · · Y

...
... 1

...
...

...
...

...
. . . 0

...
...

0 0 · · · · · · 0 1 Y · · · · · · · · · · · · Y














.

• We perform row operations to generate code C′ with the

generator matrix

G′ =



















1 X · · · X 0 0

0 1 X · · · X 0

0 0
. . .

. . .
. . .

. . .

...
... 1

. . .
. . .

...
...

. . . X

0 0 · · · · · · 0 1
︸ ︷︷ ︸

k

0 · · · 0

0 · · · 0

0 · · · 0

. . .
...

· · · X 0

X · · · X
︸ ︷︷ ︸

N − 1

X · · · X

... · · ·
...

X · · · X

X X

...
...

X · · · X




















︸ ︷︷ ︸

B −N + 1

,

where the goal is to “spread” N − 1 parity symbols

diagonally with the data symbols. As it is easy to see

that code C′ (and also C′′) can recover from a burst of

size B starting at time 0 only at time T ′ = k + B − 1.

It follows that for any B > N , T ′ > T hence this code

does not meet the required constraints. Yet, as we show

next, it is an important interim step.

1We note that Y is not a constant element, but rather a place-holder.



This “spreading” is achieved via successive row cancel-

lation. Equivalently, it can be denoted as G′ = MG′′

where matrix M is an upper triangular matrix which is

denoted as

M =



























1

0

...

0

0

0

0

0

N−1
︷ ︸︸ ︷

Y ′ · · · Y ′

1 Y ′ · · ·

· · ·
. . .

. . .

· · · 0 1

· · · 0 0

· · · 0 0

· · · 0 0

· · · 0 0

0 · · · · · · 0

Y ′ 0 · · · 0

. . .
. . .

. . .
...

Y ′ · · · Y ′ 0

1 Y ′ · · · Y ′

0
. . .

. . . Y ′

0 0 1 Y ′

0 0 0 1



























,

where Y ′ denotes a function of one of the Y symbols.

Since all entries in M are linear combinations of elements

from G′ it is also over Fq . Further, M is a full-rank

matrix hence it is invertible. Since an erasure of any

l columns in G′ can be translated to an erasure of l
columns in G′′ (by multiplying with the inverse of M),

the following property holds.

Property 1. block code C′ with generator matrix G′ is

an (n, k) MDS code over Fq .

• Finally, we replace the (B−N +1)× (B−N +1) upper

right matrix with α · IB−N+1 where α ∈ Fq2 \ Fq to

generate code C with the generator matrix

G =



















1 X · · · X 0 0

0 1 X · · · X 0

0 0
. . .

. . .
. . .

. . .

...
... 1

. . .
. . .

...
...

. . . X

0 0 · · · · · · 0 1
︸ ︷︷ ︸

k

0 · · · 0

0 · · · 0

0 · · · 0

. . .
...

· · · X 0

X · · · X
︸ ︷︷ ︸

N − 1

α · · · 0

0
. . . 0

0 · · · α

X · · · X

...
...

X · · · X




















︸ ︷︷ ︸

B −N + 1

.

The generator matrix G is composed of the following three

blocks

• H1 - The left k × (k +N − 1) matrix.

• H2 - The lower right (k − (B −N + 1)) ×
(n− (B −N + 1)) matrix.

• H3 - The upper right (B−N +1)× (B−N +1) matrix.

These blocks are depicted below:

G =

1 X · · · X 0 0 0 · · · 0 α · · · 0

0 1 X · · · X 0 0 · · · 0 0
. . . 0

0 0
. . .

. . .
. . .

. . . 0 · · · 0 0 · · · α

...
... 1

. . .
. . .

. . .
... X · · · X

...
...

. . . X · · · X 0
...

...

0 0 · · · · · · 0 1 X · · · X X · · · X





































H1

H2

H3

.

Before showing that block code C with generator matrix G

is a capacity-achieving streaming code we show the following

properties of H1 and H2.

Property 2. Block H1 is a generator matrix of a (k+N−1, k)

MDS code over Fq .

This can be viewed from noting that H1 is a result of

puncturing (B−N−1) columns from G′ which is a generator

matrix of (n, k) MDS code.

Property 3. Block H2 is a generator matrix of an (n− (B−
N + 1), k − (B −N + 1)) MDS code over Fq .

This property holds since one may assume that H2 is

generated from G′ by assuming that the first (B − N + 1)
symbols of G′ ({x0, . . . , xB−N}) were received without errors

(equivalently assume that {s0, . . . , sB−N} = {0, . . . , 0}).

Even though G′ is not systematic, due to its structure receiving

{x0, . . . , xB−N} without errors means that {s0, . . . , sB−N}
can be decoded correctly and hence can be cancelled from the

other received symbols. Therefore, the remaining code is an

(n− (B −N + 1), k − (B −N + 1)) MDS code over Fq .2

Following Properties 2 and 3 we denote the codes induced

by H1 and H2 as MDS1 and MDS2.

Remark 1. Using (5) it follows that MDS2 is a (T, T −B)
MDS code.

Remark 2. In case T > B, symbols {xB , . . . , xT−1} con-

tain information only from {sB−N+1, . . . , sk−1}, i.e., these

are the only symbols of MDS2 without interference from

{s0, . . . , sB−N} (which are not data symbols of MDS2).

Remark 3. Although G is not a systematic generator matrix,

we note that Ĝ = M−1G is a systematic generator matrix.

Since M is an invertible upper triangular matrix, it can be

shown that Ĝ also results in a capacity-achieving streaming

code that is systematic.

The following Theorem is proved in Section V.

2This can be also viewed as shortening MDS code C′ by (B − N + 1)
data symbols.



Theorem 1. Block code C with generator matrix G is a

block code which conforms to C(W,B,N) with a delay-

constraint T and thus a capacity-achieving streaming code

of any C(W,B,N) with delay T and field size that scales

quadratically with the delay constraint (O(T 2)) can be gen-

erated from C using diagonal interleaving.

IV. EXAMPLE

As an example we take the case where B = 4, N = 3 and

T = 6. The generator matrix of the resulting code is:

1 X X 0 0 0 α 0

0 1 X X 0 0 0 α

0 0 1 X X 0 X X

0 0 0 1 X X X X

















,

where

• MDS1 is a (6, 4) MDS code.

• MDS2 is a (6, 2) MDS code.

We demonstrate the decoding process for several cases of

erasures. We focus on decoding symbol s0. As decoding

symbol s0 when symbol x0 is not earased is immediate we

focus only on cases where x0 is erased.

• A burst of size B = 4 starting at time 0

1 X X 0 0 0 α 0

0 1 X X 0 0 0 α

0 0 1 X X 0 X X

0 0 0 1 X X X X

















,

Using MDS2, s2 and s3 can be decoded at time 5 since

we have two linear independent symbols from a (6, 2)
MDS code (x4 and x5). These symbols are cancelled from

x6 to recover s0.

• N = 3 sporadic erasures where x6 is erased:

1 X X 0 0 0 α 0

0 1 X X 0 0 0 α

0 0 1 X X 0 X X

0 0 0 1 X X X X

















.

Using MDS1, all data symbols can be decoded at time

4 since we have four linear independent symbols from a

(6, 4) MDS code.

• N = 3 sporadic erasures where x6 is not erased:

1 X X 0 0 0 α 0

0 1 X X 0 0 0 α

0 0 1 X X 0 X X

0 0 0 1 X X X X

















.

We note the (3 × 5) lower right matrix of H1 (marked

as dashed blue) above is a (5, 3) MDS code which is

the outcome of “shortening” H1 by one symbol (denoted

as MDS1
1 ). Receiving symbols {x1, x2, x3} with no

erasures means that data symbols {s1, s2, s3} can be

decoded from MDS1
1 with known interference from s0

(denoted as {s̃1, s̃2, s̃3}). Than s̃2 and s̃3 can be cancelled

from x6. Since we assume α ∈ Fq2 \Fq , it is guaranteed

that α is not nulled out hence s0 can be recovered.

Alternatively, the dashed part of g6 (interference from

{s0, s1, s2}) is in the span of MDS1
1 . Since we have three

symbols from MDS1
1 ({x1, x2, x3}) the dashed part of

g6 can be cancelled. Since we assumed α ∈ Fq2 \ Fq , it

is guaranteed that α is not nulled out hence s0 can be

recovered.

The decoding of si ∈ {s1, s2, s3} is done in a similar

manner where we assume by induction that {s0, . . . , si−1}
have already been recovered by time T + i.

V. PROOF OF THEOREM 1

We prove next that the construction described above con-

forms to C(W,B,N) with a delay-constraint T . The field size

of this construction is q2 where q = n. Recalling (5) we

conclude that the field size of the suggested construction is

O(T 2).

• Decoding data symbols {s0, . . . , sB−N}
We analyze the two different types of erasures:

– A Burst of length B starting at time i
Decoding data symbol s0
Following Property 3 and Remark 1 we recall that

MDS2 is a (T, T −B) MDS code. A burst of

B symbols starting at time 0 means that symbols

{xB , . . . , xT−1} are not erased. Recalling Remark 2,

these symbols don’t have an interference from data

symbols {s0, . . . , sB−N}. Therefore, data symbols

{sB−N+1, . . . , sk} can be recovered using MDS2

and cancelled from symbol xT to recover data sym-

bol s0.3

Decoding data symbols {s1, . . . , sB−N}
we again argue the recovery in two steps:

∗ Recovery of {sB−N+1, . . . , sk} using MDS2.

∗ Recovery of si using xT+i by canceling the effect

of {sB−N+1, . . . , sk}.

We first assume by induction that {s0, . . . , si−1}
have already been recovered by time T + i and

claim that {xi+B , . . . , xi+T−1}, which are non-

erased following a burst erasure starting at time i,

suffice to recover the symbols in the first step. Then,

{sB−N+1, . . . , sk} are cancelled from symbol xT+i

to recover data symbol si.
– N arbitrary erasures

Decoding data symbol s0
First, we note that we assume that symbol x0 is one

of the erased symbols otherwise decoding is trivial.4

We further differentiate between the following two

cases

3In case T = B it can be shown that H3 = α · IB−N+1 hence s0 can
be recovered directly from xT .

4If N = 1 it means that the only erasure is that of symbol x0 and hence
decoding is done as described next for the case when symbol xT is not erased.



∗ Symbol xT is erased

We note that in this case, in MDS1 we have

N−1 erasures. Following Property 2, MDS1 can

correct any N−1 erasures and hence data symbol

s0 can be recovered.

∗ Symbol xT is not erased

Note that the (k − 1)× (k − 1 +N − 1) lower

right submatrix of H1 (marked as the dashed

matrix below) is a (k − 1 +N − 1, k − 1) MDS

code (can be viewed as “shortening” MDS1 by

one data symbol) and we denote it as MDS1
1 .

1 X · · · X 0 0 0 · · · 0 α

0 1 X · · · X 0 0 · · · 0 0

0 0
. . .

. . .
. . .

. . . 0 · · · 0 0

...
... 1

. . .
. . .

. . .
... X

...
...

. . . X · · · X 0
...

0 0 · · · · · · 0 1 X · · · X X

































H1

g0 g1, . . . ,gT−1 gT

Since we may assume that symbols

{x1, . . . , xT−1} have up to N − 1 erasures,

using MDS1
1 , data symbols {s1, . . . , sk} can be

recovered up to a known interference from s0
(denoted as {s̃1, . . . , s̃k}). Since α ∈ Fq2 \ Fq ,

{s̃1, . . . , s̃B−N} can be cancelled from symbol

xT while it is guaranteed that α is not nulled

out5 and thus symbol s0 can be recovered.

Alternatively we note that the dashed part of gT is

in the span of MDS1
1 (and further can be denoted

as linear combination from the base field of the

symbols of MDS1). Since we have enough linear

independent columns from MDS1
1 , the dashed

part of gT can be cancelled while it is guaranteed

that α ∈ Fq2 \ Fq , is not nulled out and thus data

symbol s0 can be recovered.

Decoding data symbols {s1, . . . , sB−N}
We first assume by induction that {s0, . . . , si−1}
have already been recovered by time T + i.
We further assume that their impact on symbols

{xT , . . . , xT+i} is cancelled. After cancelling sym-

bols {s0, . . . , si−1} from MDS1 we are left with

a (k − i+N − 1, k − i) MDS code (which can re-

cover N − 1 erasures). Equivalently, this can be

viewed as “shortening” MDS1 by i symbols. We

denote it as MDSi
1.

Further, we may assume that symbol xi is one of the

erased symbols, or otherwise decoding of data sym-

bol si is trivial (since we assumed {s0, . . . , si−1}

5Since all elements in MDS2 belong to Fq , the cancellation is done by
multiplying {s̃1, . . . , s̃B−N} with coefficients from the base field.

have been decoded correctly). We differentiate again

between the following two cases:

∗ Symbol xT+i is erased

Assuming xT+i is erased means that there are at

most N−1 erasures in MDSi
1 (which can recover

N − 1 erasures). Thus all data symbols can be

decoded up to time T + i.
∗ Symbol xT+i not erased

We note that the lower right

k − (i+ 1)× k − (i+ 1) +N − 1 sub-matrix of

H1 is also (k − (i + 1) + N − 1, k − (i + 1))
MDS code (can be also viewed as “shortening”

MDSi
1 by one symbol therefore we denote it

as MDSi+1
1 ). We may assume that symbols

{xi+1, . . . , xT−1} have up to N − 1 erasures

hence MDSi+1
1 can decode data symbols

{si+1, . . . , sk} up to a (known) interference from

data symbol si (denoted by {s̃i+1, . . . , s̃k}. Next,

{s̃i+1, . . . , s̃B−N} are cancelled from symbol

T+i and, again, it is guaranteed that α ∈ Fq2 \Fq

is not cancelled, thus si can be recovered.

• Decoding data symbol {sB−N+1, . . . , sk−1}
We first assume by induction that {s0, . . . , sB−N} have

already been recovered by time T + i and cancelled from

the received symbols. This means that we are left with

MDS2. Recalling Property 3 MDS2 is a (k− (B−N+
1) × (n − (B − N + 1) MDS code which means it can

correct any B erasures. Recalling that B ≥ N it means

that either a burst of B erasures or arbitrary N erasures

can be correctly decoded at time T + i.
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